Reactor Neutrinos

P5 Town Hall March 22, 2023

Bryce Littlejohn
Illinois Institute of Technology

ORNL's HFIR: Lifetime Extension Plans
NIST's NBSR Reactor Just Re-Started

Commercial Vogtle 3 Reactor: Just Went Critical

How Are Reactor Neutrinos Special?

- Energy: MeV-scale, rather than GeV-scale
- Flavor: Pure electron flavor, rather than (mostly) muon flavor
- Operations: terrestrial source operated (paid for) by others
- Attributes belie synergies with accelerator neutrino efforts

Reactor Neutrinos and P5 Drivers

Pursue the physics associated with neutrino mass

- Measure oscillation parameters of three Standard Model (SM) neutrinos
- Probe additional neutrino types via oscillation: sterile neutrinos
- Appear in Snowmass 2021 as 'NF01' and 'NF02' topical groups
- Explore the unknown: new particles, interactions, and physical principles.
 - Using reactors as a laboratory for probing BSM particles (interactions) of low mass (low-energy scale)
 - Developing improved technology and reactor flux models for this enhancing BSM sensitivity
 - Appear in Snowmass 2021 as 'NF03,' 'NF09,' and 'NF10' topical groups

Reactor Neutrinos and P5 Drivers

Pursue the physics associated with neutrino mass

Mass ordering: is the lightest neutrino mostly made of electron flavor?

Lepton flavor: Is the lepton mixing matrix unitary?

chlore the unknown: new particles interactions

Short-baseline anomalies: Can we see apparent flavor transformation from new mass states/couplings?

mass (low-energy scale)

Reactors are an essential piece for answering all these open questions.

and 'NF10' topical groups

A Diverse Reactor Community

- The reactor neutrino community is a diverse interest group of many experiments with strong relevance to most Topical Groups within the Snowmass 2021 Neutrino Frontier
- During Snowmass 2021, we united to compose a White Paper summarizing the importance of our field to the next decade of particle physics: <u>Akindele et al, hep-ex[2203.07214]</u>

'Standard' Oscillations: Progress

- Reactor neutrinos are the source of best precision on some standard model neutrino flavor mixing parameters
- Daya Bay dominates θ_{13} while providing a competitive measurement of Δm^2_{31}
- KamLAND provides world's best Δm^2_{12} parameter bound

Standard Oscillations: Future Aims

- JUNO can generate major improvement in θ₁₂, Δm²₁₂, mass ordering knowledge
 - Detector assembly will be complete at the end of 2023
 - 3σ mass ordering determination expected with six years of data
 - World-best measurements of θ_{12} , Δm^2_{12} in first 100 days
- If we want aspects of lepton flavor mixing to be as wellunderstood as in the quark sector, reactors are essential.
 - Unitarity tests too: reactors are pure electron-flavor factories, with no matter effects.

(relat. precision at 3σ)		for quarks
$ heta_{12}$	(~1%)	0.6 %
Δm^2_{21}	$(\sim 1\%)$	
$ \Delta m^2_{31} $	(~0.5%)	
$ heta_{13}$	(9%)	8.3 %
$\theta_{23}(24\%)$		5.2%

Non-Standard Oscillations: Progress

 Lots of progress in probing the Reactor Antineutrino Anomaly, one of four 'canonical' short-baseline neutrino anomalies

Non-Standard Oscillations: The 'RAA'

- Lots of progress in probing the Reactor Antineutrino Anomaly, one of four 'canonical' short-baseline neutrino anomalies
- New experiments (PROSPECT-I, STEREO, NEOS, DANSS) ruled out oscillations in a lot of space suggested by the Flux Anomaly.
 - Crucial phase space remains unaddressed, including a positive claim by Neutrino-4
- New neutrino/nuclear modeling/ measurements support another explanation: bad flux predictions.

• Sterile oscillations are perfectly compatible with this scenario, but at smaller (0-10%) amplitudes

Non-Standard Oscillations: Anomalies

- The three other short-baseline anomalies remain unexplained: Gallium, LSND, and MiniBooNE
- Many pheno explanations impact reactor signatures
 - `3+1' sterile picture, for example
 - <u>'Non-vanilla' models too:</u> 3+1+NSI, 3+1+decay, others
- A key to unravelling/excluding BSM causes: dataset diversity
 - MeV <u>and</u> GeV; muon <u>and</u> electron; appearance <u>and</u> disappearance
 - Example: Testing MiniBooNE with MicroBooNE data <u>Arguelles et al, PRL 128 (2022)</u>

 Short-baseline reactor experiments play a unique role in an integrated global effort to understand these anomalies.

Non-Standard Oscillations: Future Aims

- Near-future reactor experiments can address much of the remaining 'interesting' oscillation space in the next P5 period.
- Example: PROSPECT-II
 - In I year, clearly address claims of <u>Neutrino-4</u> at high mass splitting
 - Cover all remaining <u>Gallium</u>
 <u>Anomaly</u>, RAA oscillation space below ~10 eV²
 - Pin down electron disappearance to the few percent-level below ~10 eV², benefitting anomaly and long-baseline oscillation interpretations

BSM Physics: Progress and Aims

- Reactor-based experiments, just like beam experiments, have hopped aboard the Neutrino BSM train.
- Many reactor BSM signatures are being explored; scope will broaden in future, coupled with advancing detection technology
 - CONNIE:
 New BSM couplings
 observable in coherent
 neutrino-nucleus scatters
 ('reactor CEvNS')
 - PROSPECT:
 Boosted dark matter
 - <u>TEXONO</u>: reactor-produced millicharged particles

Future sensitivity may be Mz' (MeV) limited by reactor flux knowledge, can be solved by other reactor experiments (PROSPECT-II, etc.)

Reactors and Detector R&D

- Reactor neutrino experiments are drivers of broadly-useful particle detection and QIS-relevant technology
 - Short-baseline reactor experiments (PROSPECT, MAD, CHANDLER): technology for reactor monitoring, neutron detection applications, like Li-doped PSD scintillator
 - Reactor CEvNS experiments (RICOCHET, CONNIE, MINER, etc.): QIS-relevant tech/infrastructure/expertise, such as cryogenic detector facilities, operations, readout, multiplexing, etc.

NUCLEUS: cryogenic phonon detectors

Li-doped PSD scintillator bars at LLNL

CONNIE: low-threshold ionization detectors

Reactors and Workforce Development

- Current and future reactor experiments provide ideal timescales and experiences for training early-career scientists
 - Short, near-term timescales
 - Range of sizes: from 'tabletop' to 'kilotons'
 - One student, many skills: hardware, software, analysis

MINER team at TAMU's TRIGA reactor

Tabletop detector prep for NUCLEUS (courtesy R. Strauβ)

Summary

- Nuclear reactors emit antineutrinos with unique flavor, energy, and operational attributes.
- Reactor neutrino experiments are an essential piece of a global effort to achieve precision tests of lepton flavor mixing and complete understanding of long-standing neutrino anomalies.
- Many reactor experiments can be initiated, run, and completed within timescales/budgets associated with the next P5 period.
- Reactor neutrino efforts are drivers of applied and QISoriented technology development in particle physics.
- Spanning scales from tabletop to kiloton, reactor efforts offer valuable near-term workforce development opportunities.
- More questions? See the <u>Snowmass 2021 Reactor Whitepaper</u>

Thanks!

Backup

JUNO Physics Delivery vs. Time

JUNO Physics Topics

A multi-purpose observatory

New physics

~60 IBDs per day

Several per day

Hundreds per day

~5000 IBDs for CCSN @10 kpc

Several IBDs per day

Neutrino oscillation & properties

IBD: inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$

CCSN: core-collapse supernova

Neutrinos as a probe

What Is PROSPECT?

What Is PROSPECT?

- PROSPECT is the world's first precision on-surface reactor neutrino experiment
- A multi-ton segmented, Li-doped PSD-capable liquid scintillator detection instrument
- Situated at the compact, highly ²³⁵U-enriched High Flux Isotope Reactor (HFIR) at ORNL

A HFIR Core

The PROSPECT Layout

PROSPECT-I at HFIR, 2018

PROSPECT-II Design

PROSPECT-II Design and Run Plan

- PROSPECT-II is shovel-ready: demonstrated technology, modest design updates, rapid production.
- Like PROSPECT-I, PROSPECT-II can be fabricated and deployed in roughly 1 year: July 2023 July 2024
- PROSPECT-II can capture ~13 HFIR cycles through 2026, and have x10 statistical power of PROSPECT-I

